lunes, 5 de noviembre de 2012

Resta de Binarios

Resta de números binarios

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.
Ejemplos
        10001                           11011001    
       -01010                          -10101011
       ——————                          —————————
        00111                           00101110
 
 
En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.
Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:
  • Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
        100110011101             1001     1001     1101
       -010101110010            -0101    -0111    -0010
       —————————————      =     —————    —————    —————
        010000101011             0100     0010     1011
 
  • Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo.
Ejemplo
La siguiente resta, 91 - 46 = 45, en binario es:

        1011011                                             1011011
       -0101110       el C2 de 0101110 es 1010010          +1010010
       ————————                                            ————————
        0101101                                            10101101
 
 
En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:


        11011011                                            11011011
       -00010111       el C2 de 00010111 es 11101001       +11101001
       —————————                                           —————————
        11000100                                           111000100
 
 
Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.
  • Utilizando el complemento a uno. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit que se desborda

No hay comentarios:

Publicar un comentario